Какие функции сетевой архитектуры требуют реализации протокол. Архитектура протоколов в компьютерных сетях. архитектура эмвос (open system interconnection, osi). Маршрутизаторы и топология сети

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Иерархия протоколов TCP/IP

2. Архитектура протоколов TCP/IP

3. Основные протоколы семейства TCP/IP

4. Межсетевой протокол IP

4.1 Маршрутизация

Заключение

Список литературы

Введение

Сеть Internet - это сеть сетей, объединяющая как локальные сети, так и глобальные сети. Поэтому центральным местом при обсуждении принципов построения сети является семейство протоколов межсетевого обмена TCP/IP. Под термином "TCP/IP" обычно понимают все, что связано с протоколами TCP и IP. Это не только собственно сами проколы с указанными именами, но и протоколы построенные на использовании TCP и IP, и прикладные программы. Главной задачей стека TCP/IP является объединение в сеть пакетных подсетей через шлюзы.

Каждая сеть работает по своим собственным законам, однако предполагается, что шлюз может принять пакет из другой сети и доставить его по указанному адресу. Реально, пакет из одной сети передается в другую подсеть через последовательность шлюзов, которые обеспечивают сквозную маршрутизацию пакетов по всей сети. В данном случае, под шлюзом понимается точка соединения сетей. При этом соединяться могут как локальные сети, так и глобальные сети. В качестве шлюза могут выступать как специальные устройства, маршрутизаторы, например, так и компьютеры, которые имеют программное обеспечение, выполняющее функции маршрутизации пакетов.

Маршрутизация - это процедура определения пути следования пакета из одной сети в другую.

Такой механизм доставки становится возможным благодаря реализации во всех узлах сети протокола межсетевого обмена IP. Если обратиться к истории создания сети Internet, то с самого начала предполагалось разработать спецификации сети коммутации пакетов. Это значит, что любое сообщение, которое отправляется по сети, должно быть при отправке "нашинковано" на фрагменты. Каждый из фрагментов должен быть снабжен адресами отправителя и получателя, а также номером этого пакета в последовательности пакетов, составляющих все сообщение в целом. Такая система позволяет на каждом шлюзе выбирать маршрут, основываясь на текущей информации о состоянии сети, что повышает надежность системы в целом. При этом каждый пакет может пройти от отправителя к получателю по своему собственному маршруту. Порядок получения пакетов получателем не имеет большого значения, т.к. каждый пакет несет в себе информацию о своем месте в сообщении. При создании этой системы принципиальным было обеспечение ее живучести и надежной доставки сообщений, т.к. предполагалось, что система должна была обеспечивать управление Вооруженными Силами США в случае нанесения ядерного удара по территории страны.

1. Иерархия протоколов TCP/IP

Обычно сетевые протоколы создаются на основе единой концепции в рамках многоуровневой системы, в которой каждый уровень отвечает за свою часть процессов передачи информации. Семейством протоколом (protocol suite) называют всю совокупность протоколов различных уровней.

Семейство TCP/IP принято подразделять на четыре уровня:

1. Канальный уровень (link layer, data-link layer), или уровень сетевого интерфейса (network interface), содержит две основные компоненты: аппаратный сетевой интерфейс компьютера (сетевую карту) и со от соответствующий драйвер этого сетевого интерфейса в операционной системе. Вместе они обеспечивают как физическое подключение к кабелю (или к другой физической среде), так и управление всеми аппаратными процессами передачи.

2. Сетевой уровень (network layer, internet layer) отвечает за перемещение пакетов по тому или иному маршруту в сети. В семействе протоколов ТСР/IР сетевой уровень представлен: протоколами: IP (Internet Protocol), ICMP (Internet Control Message Protocol) и IGMP (Internet Group Management Protocol).

3. Транспортный уровень (transport, layer) организует для вышестоящего прикладного уровня обмен данными между двумя компьютерами и сети. В семействе протоколов TCP/IP одновременно используются два существенно различных транспортных протокола: TCP (Transmission Control Protocol -- протокол управления передачей данных) и UDP (User Datagram Protocol -- протокол дейтаграмм пользователя). TCP обеспечивает надежную передачу потоков данных между двумя компьютерами в сети. В его задачи входит: разделять данные, поступающие от обслуживаемых им приложений, на блоки приемлемого размера для нижестоящего сетевого уровня; подтверждать получение пришедших к нему по сети пакетов; в течение установленных им периодов времени (таймаутов) ожидать прихода подтверждений о получении отправленных им пакетов и т. п. Поскольку TCP берет нa себя все проблемы обеспечения надежной доставки врученных ему данных по назначению, то прикладной уровень освобождается от этих забот. Напротив, UDP предоставляет прикладному уровню намного более примитивный сервис. Он лишь рассылает данные адресатам в виде пакетов, называемых UDP-дейтаграммами (UDP datagrams), без гарантии их доставки, Предполагается, что требуемая степень надежности пересылки должна обеспечиваться самим прикладным уровнем. Каждый из этих двух транспортных протоколов находит соответствующее его достоинствам и недостаткам применение. Причины, по которым для одних приложений предпочтителен TCP, а для других -- UDP, станут понятны при рассмотрении самих приложений.

4. Прикладной уровень (application layer) обеспечивает выполнение разнообразных прикладных задач. Существует определенный "классический” набор стандартных прикладных сервисов, которые предлагаются в большинстве реализаций семейства TCP/IP. В их числе:

· Telnet - протокол удаленного доступа,

· FTP (File Transfer Protocol) -- протокол передачи файлов.

· SMTP (Simple Mail Transfer Protocol) -- простой протокол обмена электронной почтой,

· SNMP (Simple Network Management Protocol) -- простой протокол управления сетью.

2. Архитектура протоколов TCP/IP

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети могут обмениваться пакетами.

Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель; там пакет направляется к получателю. Объединенная сеть обеспечивает датаграммный сервис.

Проблема доставки пакетов в такой системе решается путем реализации во всех узлах и шлюзах межсетевого протокола IP. Межсетевой уровень является по существу базовым элементом во всей архитектуре протоколов, обеспечивая возможность стандартизации протоколов верхних уровней.

3. Основные протоколы семейства TCP/IP

В семействе протоколов TCP/IP на транспортном уровне действуют протоколы TCP и UDP. Оба опираются на протокол IP в качестве нижележащего сетевого уровня.

TCP обеспечивает надежную транспортную службу поверх ненадежного сервиса IP.

Протокол UDP позволяет приложениям отправлять и получать порции информации в виде так называемых UDP дейтаграмм (UDP datagrams). При этом, однако, UDP не обладает надежностью TCP: нет никакой гарантии, что UDP-дейтаграмма вообще дойдет до своего пункта назначения.

Основным протоколом сетевого уровня является IР. Он обслуживает как TCP, так и UDP. Каждая порция данных формируемых TCP или UDP для пересылки по интерсети, проходит через уровень IP как на оконечных хостах, так и на каждом промежуточном маршрутизаторе. Также некий пользовательский процесс, имеющий прямой доступ к IP. Это допустимое исключение -- некоторые протоколы маршрутизации напрямую контактируют с IP; кроме того, эта возможность используется и при проведении экспериментов с новыми протоколами транспортного уровня

Протокол IСМР примыкает к IP. Он служит для обмена сообщениями об ошибках и иной важной информацией с IP-модулем другого хоста или маршрутизатора. Хотя ICMP используется в основном протоколом IP, прикладная задача также может иметь к нему доступ. Мы увидим, что два наиболее популярных средства диагностики, Ping и Traceroute, обращаются к ICMP непосредственно, минуя IP.

IGMP используется при групповой пересылке данных, то есть когда UDP-дейтаграммы предназначены одновременно нескольким хостам. Мы расскажем об основных свойствах широковещательной (broadcasting) передачи UDP-дейтаграмм, адресованных всем хостам указанной сети, и о групповой пересылке данных (multicasting).

ARP и RARP -- специализированные протоколы, используемые определенными типами сетевых интерфейсов (например, Ethernet или Token Ring) для отображения адресов уровня IP в соответствующие им адреса канального уровня.

4. Межсетевой протокол IP

В семействе TCP/IP протоколу IP отведена роль "рабочей лошадки": в IP-дейтаграммах передаются все данные TCP, UDP, ICMP иIGMP. Однако доставка IP-дейтаграмм -- это по определению ненадежный и не поддерживающий соединение сервис.

Ненадежный сервис не гарантирует того, что IP-дейтаграмма успешно доберется к месту назначения. О такой доставке пакетов принято говорить, что делается все возможное, но успех попытки зависит от обстоятельств (best effort deliveiy). Если на промежуточном узле происходит сбой (например, временно переполнен буфер маршрутизатора), то его IP-модуль действует просто: он уничтожает дейтаграмму. Предполагается, что требуемая степень надежности должна обеспечиваться протоколами верхних уровней (например,TCP).

Термин не поддерживающий соединение (connectionless) означает, что IP не ведет никакого учета очередности доставки дейтаграмм и каждая обрабатывается независимо от остальных. Как следствие, очередность доставки может нарушаться. Когда хост одну за другой последовательно отправляет две дейтаграммы (сначала А, потом В) одному и тому же адресату, маршрутизация обеих происходит независимо. Маршруты их продвижения могут оказаться разными, причем такими, что В прибудет раньше А.

Модуль IP является базовым элементом технологии internet, а центральной частью IP является его таблица маршрутов. Протокол IPиспользует эту таблицу при принятии всех решений о маршрутизации IP-пакетов. Содержание таблицы маршрутов определяется администратором сети. Ошибки при установке маршрутов могут заблокировать передачи.

4.1 Маршрутизация

Важнейшая из основных функций уровня IP -- это маршрутизация. Источником дейтаграмм, подлежащих маршрутизации на хосте, может быть как сам этот хост, так и любой другой компьютер в сети. В последнем случае хост должен быть специально конфигурирован для выполнения функций маршрутизатора, иначе поступающие на его сетевые интерфейсы, но не ему адресованные дейтаграммы будут им просто игнорироваться.

Заключение

Семейство протоколов TCP/IP работает на любых моделях компьютеров, произведенных различными производителями компьютерной техники и работающих под управлением различных операционных систем. С помощью протоколов TCP/IP можно объединить практически любые компьютеры. И что самое удивительное, сегодняшние реализации протокола TCP/IP очень далеки от того, как он задумывался исходно. В конце 60-х годов начался исследовательский проект, финансируемый правительством США, по разработке сети пакетной коммутации, а в 90-х годах результаты этих исследований превратились в наиболее широко используемую форму сетевого взаимодействия между компьютерами. В настоящее время это действительно открытая система, а именно, семейство протоколов и большое количество бесплатных реализаций (либо достаточно дешевых). Они составляют основу того, что в настоящее время называется словом Internet.

Список литературы

сетевой интерфейс пользовательский

1. Брежнев А.Ф., Смелянский Р.Л. «Семейство протоколов TCP/IP»

2. Н. Угринович «Информатика и информационные технологии»

3. http://www.citforum.ru/internet/comer/contents.shtml

4. http://tcpips.ru/?Obzor_TCP%2FIP:Realizacii_TCP%2FIP_v_Unix

5. http://tcpip.pp.ru/

Размещено на Allbest.ru

...

Подобные документы

    Механизм создания и обмена пакетами в сети передачи информации на основе стека протоколов ZigBee. Принцип действия, особенности работы и коммутации с другими протоколами, определение основных методов и способов защиты информации, передаваемой в сети.

    курсовая работа , добавлен 12.09.2012

    Стеки протоколов общемировой сетевой базе. Формат кадра сообщения NetBIOS. Использование в сети стеков коммуникационных протоколов: IPX/SPX, TCP/IP, OSI и DECnet. Дистанционное управление освещением. Особенности использования коммуникационных протоколов.

    презентация , добавлен 21.02.2015

    Стандартные сети коммуникационных протоколов. Стек OSI. Стек TCP/IP. Принципы объединения сетей на основе протоколов сетевого уровня. Ограничения мостов и коммутаторов. Модем как средство связи между компьютерами. Международные стандарты модемов.

    курсовая работа , добавлен 06.07.2008

    Разработка структуры локально-вычислительной сети ГБОУ СПО "ВПТ". Обоснование топологии, выбор аппаратного обеспечения для коммутации и сегментации. Установка и настройка сетевых протоколов и служб. Система мониторинга сетевых узлов и сетевого трафика.

    дипломная работа , добавлен 25.10.2013

    Общие понятия, задачи и характеристика компьютерной сети TMN: технология управления, состав и назначение основных элементов, функциональные возможности, архитектура. Реализация управления в модели ВОС. Сравнительная характеристика протоколов SNMP и CMIP.

    курсовая работа , добавлен 18.03.2011

    Формализация требований к локально-вычислительной сети (ЛВС). Выбор и обоснование аппаратного обеспечения для коммутации и сегментации ЛВС. Установка и настройка сетевых протоколов и служб. Тестирование и отладка ЛВС: выявление неисправностей и пр.

    дипломная работа , добавлен 17.09.2017

    Элементы коммуникационной сети. Сетевое сообщение согласно модели ISO. Уровни сетевых протоколов. Устойчивость сетей к ошибкам, их обнаружение и реконфигурация. Задачи проектирования. Функционирование сети Ethernet, структура пакета. Схема работы GPRS.

    лекция , добавлен 24.01.2014

    Разработка первой программы для отправки электронной почты по сети. Развитие протоколов передачи данных. Роль Джона Постела в разработке и стандартизации сетевых протоколов. Способы подключения к Интернету. Настройка СТРИМ. Доступ через сотовую связь.

    презентация , добавлен 30.04.2014

    Локальная вычислительная сеть управления систем связи и телекоммуникаций автомастерской. Пропускная способность каналов между клиентами сети и серверами. Отличия стека протоколов 100Base-T от стека протоколов 10Base-T. Расчет работоспособности сети.

    курсовая работа , добавлен 18.01.2016

    Обзор сетевых технологий контроля и определение требований к системам управления, размер системы и взаимосвязанность составляющих ее частей. Системная архитектура, обзор протоколов передачи и возможных решений, согласование и конфигурация линии связи.

Архитектура протоколов TCP/IP, известная как набор протоколов TCP/IP, возникла в результате исследований в области протоколов и разработок, выпол­нявшихся в экспериментальной сети с коммутацией пакетов под названием ARPANET, которая была основана Управлением перспективных исследователь­ских программ Министерства обороны США (Defense Advanced Research Projects Agency - DARPA). Этот набор протоколов состоит из большого собрания прото­колов, изданных Координационным советом по сети Internet (Internet Activities Board - IAB) в качестве стандартов для Internet.

Уровни протокола tcp/ip

В общем можно сказать, что в обмене информацией принимают участие три агента: приложения, компьютеры и сети. К приложениям относятся программы, предназначенные для передачи файлов и для электронной почты. Приложения, о которых здесь пойдет речь, являются распределенными приложениями, вклю­чающими в себя обмен данными между двумя компьютерными системами. Эти и другие приложения выполняются на компьютерах, которые зачастую могут под­держивать параллельную работу нескольких приложений. Компьютеры соедине­ны между собой в сети, и предназначенные для обмена данные передаются по сети от одного компьютера на другой. Таким образом, передача данных от одно­го приложения другому включает в себя, во-первых, получение данных тем компьютером, на котором находится приложение-адресат, и, во-вторых, получе­ние данных именно тем выполняющимся на компьютере-адресате приложением, которому они предназначены.

Ввиду этого в задаче обмена информацией естественно выделить пять отно­сительно независимых уровней:

    физический уровень (physical layer);

    уровень доступа к сети (network access layer);

    межсетевой уровень (intranet layer);

    транспортный уровень (host-to-host layer или transport layer);

    уровень приложений (application layer).

На физическом уровне находится физический интерфейс между устрой­ством передачи данных (т.е. рабочей станцией или компьютером) и пере­дающей средой или сетью. На этом уровне задаются характеристики пере­дающей среды, природа сигналов, скорость передачи данных и другие подоб­ные характеристики.

Уровень доступа к сети связан с обменом данными между конечной систе­мой (сервером, рабочей станцией и т.п.) и сетью, к которой подсоединена эта система. Компьютер-отправитель должен передать в сеть адрес компьютера-адресата, чтобы сеть могла направить данные по месту назначения. Компьютеру-отправителю могут понадобиться определенные сервисы, такие, как предостав­ляемый сетью приоритет. Вид используемых на этом уровне программ зависит от типа сети; разработаны различные стандарты для сетей с коммутацией кана­лов, коммутацией пакетов (например, Х.25), локальных сетей (Local Area Net - LAN) (например, Ethernet) и других. Таким образом, имеет смысл выделить функции, связанные с предоставлением сетевого доступа, в отдельный уровень. С помощью этого приема удается избавиться от необходимости рассматривать в ос­тальных программах, предназначенных для обмена информацией на более высо­ких уровнях доступа к сети, специфические вопросы устройства используемых сетей. Одни и те же программы более высоких уровней должны правильно рабо­тать независимо от того, к какой сети подключен компьютер.

Уровень доступа к сети рассматривается в связи с доступом к сети и мар­шрутизацией данных между двумя подключенными к одной сети конечными системами. В тех случаях, когда устройства подключены к разным сетям, нуж­ны дополнительные процедуры, позволяющие данным переходить из одной сети в другую, если эти сети соединены между собой. Такие функции относятся к межсетевому уровню. На этом уровне функции межсетевой маршрутизации пре­доставляются с помощью Internet-протокола (Internet Protocol - IP). Internet-протокол реализован не только в конечных системах, но и в маршрутизаторах. Маршрутизатор - это обрабатывающее устройство, которое соединяет две сети и основной функцией которого является передача данных из одной сети в другую на их пути от одной конечной системы к другой.

Независимо от природы приложений обмен данными должен быть надеж­ным. Т.е. хотелось бы иметь уверенность в том, что все данные попали к прило­жению-адресату и что эти данные получены в том порядке, в котором они от­правлены. Как вы увидите, механизмы обеспечения надежности, по сути, неза­висимы от природы приложений. Таким образом, имеет смысл выделить такие механизмы в один общий уровень, совместно используемый всеми приложения­ми; он называется транспортным уровнем. Чаще всего для этого применяется протокол управления передачей (Transmission Control Protocol - TCP).

Наконец, в уровень приложений заложена логика, необходимая для обеспе­чения работы различных пользовательских приложений. Приложению каждого вида (например, программе передачи файлов) нужен отдельный модуль, специ­ально предназначенный для этого приложения.

Работа протоколов TCP и IP

На рис. А.1 показано конфигурирование этих протоколов для обмена ин­формацией. Чтобы было ясно, что средство связи в целом может состоять из не­скольких сетей, составляющие сети обычно называются подсетями (subnetworks). Для подключения компьютера в подсеть используется некоторый протокол доступа к сети, например Ethernet. Этот протокол позволяет узлу пере­сылать данные по подсети другому узлу; если же узел-получатель находится в другой подсети, данные попадают на маршрутизатор. Протокол IP реализован на всех конечных системах и маршрутизаторах. При передаче данных от одного узла другому с промежуточным прохождением одного или нескольких маршрути­заторов этот протокол действует как релейная станция. Протокол TCP реализо­ван только на конечных системах; он отслеживает блоки данных, убеждаясь, что все они надежно доставлены соответствующим приложениям.

Чтобы обмен информацией был возможен, каждый элемент системы должен иметь уникальный адрес. Фактически нужно задать два уровня адресации. Каж­дый узел подсети должен обладать своим уникальным глобальным сетевым адре­сом; это позволит доставить данные соответствующему узлу. Каждый процесс узла должен иметь адрес, который был бы уникальным в пределах этого узла, что позволит транспортному протоколу (TCP) доставить данные нужному про­цессу. Этот адрес известен как порт.

Проследим за выполнением простой операции. Предположим, что процессу, выполняющемуся на узле А и связанному с портом 1, нужно отправить сообщение другому процессу, связанному с портом 3 на узле В. Процесс на узле А передает про­токолу TCP сообщение с инструкциями, предписывающими отправить его в порт 3 узла В. Протокол TCP передает сообщение протоколу IP, снабжая это сообщение ин­струкциями отправить его на узел В. Обратите внимание, что протоколу IP не нужно сообщать идентификатор порта назначения. Все, что ему нужно знать, - это сами данные и идентификатор узла В. После этого протокол IP передает сообщение на уровень доступа к сети (например, протоколу Ethernet), снабжая его инструкциями отправить это сообщение маршрутизатору J (первый ретранслятор на пути к узлу В).

Чтобы сообщением можно было управлять, вместе с пользовательскими данны­ми в нем должна передаваться управляющая информация (рис. А.2). Предположим, что процесс-отправитель порождает блок данных и передает его протоколу TCP. Протокол TCP может разбить этот блок на меньшие части, чтобы ими было легче управлять. К каждой из этих частей протокол TCP добавляет управляющую инфор­мацию, известную как TCP-заголовок (TCP header), формируя сегмент TCP (TCP segment). Эта управляющая информация будет использоваться протоколом TCP на узле В. В заголовок среди прочих входят такие пункты.

    Порт назначения (destination port). Когда объект TCP на узле В получает сегмент, ему необходимо знать, кому нужно доставить данные.

    Порядковый номер (sequence number). Протокол TCP нумерует сегменты, которые он последовательно пересылает в определенный порт назначения. Это делается для того, чтобы при нарушении порядка получения сообщений объект TCP на узле В мог расположить их в правильном порядке.

    Контрольная сумма (checksum). При отправке сообщения протокол TCP включает в него код, являющийся функцией содержимого остатка сегмента. При получении сообщения протокол TCP выполняет те же вычисления и сравнивает результат с входящим кодом. Если в процессе передачи про­изошла ошибка, результаты различаются.

Затем протокол TCP передает сегменты протоколу IP, снабжая каждый из них инструкциями передать эти пакеты узлу В. Данные сегменты необходимо будет передать через одну или несколько подсетей, при этом они должны пройти через один или несколько маршрутизаторов. Для этого тоже нужна контрольная информация. Поэтому протокол IP добавляет к каждому сегменту заголовок с контрольной информацией, формируя таким образом IP-датаграмму (IP data­gram). Одним из хранящихся в IP-заголовке каждого сегмента элементов явля­ется адрес узла назначения (в нашем примере, узла В).

Наконец, каждая IP-датаграмма передается на уровень доступа к сети, что­бы на ее пути к месту назначения она могла пересечь первую подсеть. Уровень доступа к сети добавляет свой собственный заголовок, создавая при этом пакет, или кадр (фрейм). Этот пакет передается по подсети маршрутизатору подсети J. В заголовке пакета содержится необходимая для подсети информация, благодаря которой эти данные смогут пройти по подсети. Среди других элементов в заго­ловке могут содержаться такие.

    Адрес подсети назначения . Подсеть, в которой находится пакет, должна иметь информацию о том, какому присоединенному устройству нужно его доставить.

    Запросы средств. Протокол доступа к сети может запросить предоставление определенных сетевых средств, например приоритета.

На маршрутизаторе J из пакета удаляется его заголовок пакета и проверя­ется IP-заголовок. Основываясь на адресе назначения, который содержится в IP-заголовке, IP-модуль маршрутизатора, направляет датаграмму по подсети 2 на узел В. Для этого к ней снова добавляется заголовок доступа к сети.

Когда узел В получит данные, на нем выполняется обратный процесс. На каждом уровне удаляется соответствующий заголовок, а оставшаяся часть пере­дается на ближайший более высокий уровень до тех пор, пока пользовательские данные не будут доставлены в первоначальном виде тому процессу, для которого они предназначены.

Протоколы TCP и UDP

Для большинства приложений, выполняющихся в рамках архитектуры прото­кола TCP/IP, протоколом транспортного уровня является TCP. Этот протокол обес­печивает надежное соединение для передачи данных от одного приложения другому.

На рис. А.З.а показан формат заголовка TCP, который состоит как минимум из 20 октетов или 160 бит. В полях Порт отправления (Source Port) и Порт назна­чения (Destination Port) указаны идентификаторы приложений исходной системы и системы назначения, которые используют это соединение. 1 Поля Порядковый номер (Sequence Number), Номер подтверждения (Acknowledgment Number) и Окно (Window) обеспечивают текущее управление и контроль ошибок. Каждый сегмент пронумерован, чтобы можно было обнаруживать их потерю и отправлять явные подтверждения при получении сегментов. Объект, отправляющий подтверждения, для каждого из них указывает в поле Окно, сколько еще данных он готов при­нять. Поле Контрольная сумма (Checksum) представляет собой 16-битовый кадр, в котором находится контрольная последовательность, предназначенная для выяв­ления ошибок в сегменте TCP.

Кроме протокола TCP существует еще один широко используемый протокол транспортного уровня, входящий в набор протоколов TCP/IP: пользовательский протокол датаграмм (User Datagram Protocol - UDP). Протокол UDP предостав­ляет сервис без установления соединения, предназначенный для процедур на уровне приложений; этот протокол не гарантирует доставку, сохранение после­довательности или защиту от дублирования. Он позволяет процедуре отправлять сообщения другим процедурам с помощью минимального протокольного меха­низма. Протоколом UDP пользуются некоторые приложения, ориентированные на транзакции. Одним из таких приложений является простой протокол сетевого управления (Simple Network Management Protocol - SNTP), который является стандартным протоколом сетевого администрирования в сетях, работающих по протоколу TCP/IP. Протокол UDP выполняет крайне ограниченный набор функ­ций, так как он работает без установления соединения. По сути, он добавляет к протоколу IP некоторые возможности адресации портов. Легче всего это понять, рассмотрев заголовок UDP, показанный на рис. А.З.б".

Протоколы IP и IPv6

Internet-протокол (IP) на протяжении десятилетий был основным элементом архитектуры протоколов TCP/IP. На рис. А.4,а показан формат IP-заголовка, который состоит как минимум из 20 октетов, или 160 бит. В этом заголовке со­держатся 32-битовые адреса отправления и назначения. Поле Контрольная сум­ма заголовка (Header Checksum) используется для выявления ошибок в заголов­ке, что помогает избежать ошибок при доставке. В поле Протокол (Protocol) ука­зано, какой из протоколов более высокого уровня использует протокол IP, TCP, UDP или какой-то другой. Поля Флаги (Flags) и Смещение фрагмента (Fragment Offset) используются в процессе фрагментации и повторной сборки, в котором IP-датаграмма разбивается на несколько IP-датаграмм, а затем в пункте назна­чения снова собирается воедино.

В 1995 году проблемная группа проектирования Internet (Internet Engi­neering Task Force - IETF), занимающаяся разработкой стандартов для прото­колов Internet, опубликовала спецификацию протокола IP следующего поколе­ния, которая с того момента стала известна как IPng. В 1996 году эта специфи­кация получила статус стандарта, известного как IPv6. Протокол IPv6 предоставляет определенный набор функциональных улучшений существующего протокола IP (известного как IPv4). Он разработан, чтобы иметь возможность работать с более высокими скоростями, достигнутыми в современных сетях, а также с потоками данных, включающими графику и видеосигналы, которые становятся все более распространенными. Однако движущей силой разработки нового протокола послужила необходимость дополнительных адресов. Находящийся в обращении протокол IP поддерживает 32-битовые адреса отправки или назначения, В результате интенсивного расширения сети Internet и роста коли­чества подсоединенных к Internet ведомственных сетей длины этих адресов ста­ло недостаточно для всех систем, которым нужны адреса. Как показано на рис. А.4,б, заголовок IPv6 содержит 128-битовые поля для адресов отправления и назначения. Предполагается, что все системы, в которых используется прото­кол TCP/IP, со временем перейдут от текущего протокола IP к протоколу IPv6, однако этот процесс займет многие годы, если не десятилетия.

Сетевые архитектуры

Сетевая архитектура - это набор стандартов топологий и протоколов, необходимых для создания работоспособной сети .

Технология Ethernet

История Ethernet

В 1975 году фирма Xerox основала Ethernet на экспериментальной сети Ethernet Nerwork со скоростью передачи данных 2,93 Мбит/c;

В 1980 году фирмы Dec, Intel, Xerox совместно разработали и опубликовали стандарт Ethernet версии два для сети, построенной на основе коаксиального кабеля. Это Ethernet стал называться фирменным Ethernetom - Ethernet DIX или Ethernet два;

На основе фирменного Ethernet был разработан стандарт IEEE 8093, который стали называть классическим Ethernet.

Характеристики Ethernet:

Физическая топология - шина;

Логическая топология - звезда-шина;

Метод передачи данных - узкополосный, работающий на одной частоте;

Метод доступа - CSMA/CD (множественный доступ с контролем несущей и обнаружением коллизий);

Скорость передачи данных - 10, 100 Мбит/c;

Среда передачи - толстый и тонкий коаксиальный кабель, витая пара .

Стандарты Ethernet:

10Base5 используется толстый коаксиальный кабель;

10Base2 используется тонкий коаксиальный кабель;

10Base T используется витая пара;

10Base F используется оптоволоконный кабель .

Технология данной организации

Характеристики 1000Base - SX:

Физическая топология - “звезда”;

Логическая топология - “шина”;

Метод передачи данных - узкополосный, т.е. на одной частоте;

Метод доступа - CSMA/CD(множественный доступ с контролем несущей и обнаружением коллизий);

Скорость передачи данных - 1000 Мбит/сек;

Среда передачи - многомодовое оптоволокно.

Достоинства 1000Base - SX:

Дальность прохождения сигнала без повторителя до 550м;

Способность передавать одновременно несколько сигналов

Устойчивость к помехам.

Недостатки 1000Base - SX:

Для прокладки сети требуется дорогое оборудование.

Максимальная длина сегмента в технологии 1000 Base SX составляет 550м.

Максимальное количество компьютеров в данной технологии составляет 1024.

Правило четырех хабов.

Для обеспечения синхронизации станций при реализации процедур случайного доступа и надежного распознавание станциями коллизии в стандарте определено максимальное число концентраторов между двумя любыми станциями сети - четыре концентратора. Соединение концентраторов организуется иерархическим способом. Петлевидное соединение концентраторов запрещено, так как оно приводит к некорректной работе сети .

Сетевые протоколы

Сетевой протокол-это четко определенный набор правил и соглашений для взаимодействия одинаковых уровней сети .

Стек протокола TCP/IP

Стек - это набор протоколов, совместно работающих, но каждый на своем уровне.

Стек TCP/IP включает в себя 2 основных протокола:

TСP - протокол для гарантированной доставки данных, разбитых на отдельные фрагменты (соответствует транспортному уровню);

IP протокол для передачи пакетов, относится к разряду сетевых протоколов (соответствует физическому, канальному и сетевому уровням).

Стек TCP/IP выполняет следующие функции:

Обеспечивает совместимость между компьютерами разных типов;

Предоставляет доступ к ресурсам Internet;

Поддерживает маршрутизацию и используется как межсетевой

Стек протоколов TCP/IP представляет собой семейство протоколов, обеспечивающих соединение и совместное использование различных систем. Стек был разработан для работы в разнородных сетях. Протоколы стека отличаются высокой надежностью: они отвечают требованию обеспечения возможности работы узлов сети, уцелевших при ограниченном ядерном нападении. В настоящее время стек протоколов TCP/IP используется как для связи в сети Интернет, так и в локальных сетях.

В основу архитектуры TCP/IP была целенаправленно заложена одноранговая структура. TCP/IP имеет распределенный характер, в отличие от классической "нисходящей" модели обеспечения надежности. В среде с TCP/IP никакого центрального органа нет. Узлы взаимодействуют непосредственно друг с другом, и каждый из них обладает полной информацией о всех доступных сетевых сервисах. Если какой-либо из хост-компьютеров отказывает, ни одна из остальных машин на это не реагирует (если только ей не нужны данные, которые как раз на отказавшем компьютере и находятся).

Приведем список протоколов, входящих в стек TCP/IP:

  • TCP (Transmission Control Protocol - протокол управления передачей) - базовый транспортный протокол, давший название всему семейству протоколов TCP/IP;
  • UDP (User Datagram Protocol) - второй по распространенности транспортный протокол семейства TCP/IP;
  • IP (Internet Protocol) - межсетевой протокол;
  • ARP (Address Resolution Protocol - протокол разрешения адресов) - используется для определения соответствия IP-адресов и Ethernet-адресов;
  • SLIP (Serial Line Internet Protocol) - протокол передачи данных по телефонным линиям;
  • PPP (Point to Point Protocol) - протокол обмена данными "точка-точка";
  • RPC (Remote Process Control) - протокол управления удаленными процессами;
  • TFTP (Trivial File Transfer Protocol) - простой протокол передачи файлов;
  • DNS (Domain Name System) - протокол обращения к системе доменных имен;
  • RIP (Routing Information Protocol) - протокол маршрутизации.

Основные протоколы стека TCP/IP можно представить в виде структуры, изображенной на рис.1.

Рис. 1. Архитектура стека TCP/IP

Модель, основанная на стеке TCP/IP, включает в себя 4 уровня: прикладной, основной (транспортный), уровень межсетевых взаимодействий (сетевой), уровень сетевых интерфейсов (канальный). Соответствие этих уровней архитектуре модели OSI показано в таблице 1.

Таблица 1. Сопоставление уровней моделей OSI и TCP/IP

Как видно из таблицы, обе архитектуры взаимодействия включают похожие уровни, но в модели TCP/IP несколько уровней модели OSI объединены в один.

Рассмотрим функции всех четырех уровней модели, основанной на стеке протоколов TCP/IP.

1. Прикладной уровень -

обеспечивается службами, предоставляющими сетевой сервис пользовательским приложениям. Список основных служб включает в себя следующие протоколы: Telnet, FTP, TFTP, DNS, SNMP, HTTP. Прикладной уровень выполняет функции прикладного уровня и уровня представления данных модели OSI.

2. Основной уровень -

обеспечивает надежность доставки пакетов данных, их целостность и порядок доставки. На этом уровне передаваемые данные разбиваются на пакеты и передаются на нижний уровень. После передачи пакеты собираются и данные передаются на прикладной уровень. Основной протокол этого уровня - TCP. Основной уровень выполняет функции сеансового и транспортного уровней модели OSI.

3. Уровень межсетевых взаимодействий -

обеспечивает передачу пакетов данных в составной сети, где есть не только локальные, но и глобальные связи. Основной протокол этого уровня - IP. На этом уровне для сбора маршрутной информации используется протоколы маршрутизации RIP, OSPF (Open Shortest Path First). Этот уровень соответствует сетевому уровню модели OSI.

Набор многоуровневых протоколов, или как называют стек TCP/IP (табл. 2.1), предназначен для использования в различных вариантах сетевого окружения. Стек TCP/IP с точки зрения системной архитектуры соответствует эталонной модели OSI (Open Systems Interconnection – взаимодействие открытых систем) и позволяет обмениваться данными по сети приложениям и службам, работающим практически на любой платформе, включая Unix, Windows, Macintosh и другие.

Таблица 2.1. Семейство протоколов TCP/IP

Название протокола

Описание протокола

Сетевой программный интерфейс

Связь с приложениями ОС Windows

Интерфейс транспортного драйвера (Transport Driver Interface) позволяет создавать компоненты сеансового уровня.

Протокол управления передачей (Transmission Control Protocol)

Протокол пользовательских дейтаграмм (User Datagram Protocol)

Протокол разрешения адресов (Address Resolution Protocol)

Протокол обратного разрешения адресов (Reverse Address Resolution Protocol)

Протокол Internet(Internet Protocol)

Протокол управляющих сообщений Internet (Internet Control Message Protocol)

Протокол управления группами Интернета (Internet Group Management Protocol),

Интерфейс взаимодействия между драйверами транспортных протоколов

Протокол пересылки файлов (File Transfer Protocol)

Простой протокол пересылки файлов (Trivial File Transfer Protocol)

Реализация TCP/IP фирмы Microsoft соответствует четырехуровневой модели вместо семиуровневой модели, как показано на рис. 2.2. Модель TCP/IP включает большее число функций на один уровень, что приводит к уменьшению числа уровней. В модели используются следующие уровни:

Уровень Приложения модели TCP/IP соответствует уровням Приложения, Представления и Сеанса модели OSI;

Уровень Транспорта модели TCP/IP соответствует аналогичному уровню Транспорта модели OSI;

Рис. 2.2. Соответствие семиуровневой модели OSI и четырехуровневой модели TCP/IP

Межсетевой уровень модели TCP/IP выполняет те же функции, что и уровень Сети модели OSI;

Уровень сетевого интерфейса модели TCP/IP соответствует Канальному и Физическому уровням модели OSI.

Уровень Приложения

Через уровень Приложения модели TCP/IP приложения и службы получают доступ к сети. Доступ к протоколам TCP/IP осуществляется посредством двух программных интерфейсов (API – Application Programming Interface):

Сокеты Windows;

Интерфейс сокетов Windows, или как его называют WinSock, является сетевым программным интерфейсом, предназначенным для облегчения взаимодействия между различными TCP/IP – приложениями и семействами протоколов.

Интерфейс NetBIOS используется для связи между процессами (IPC – Interposes Communications) служб и приложений ОС Windows. NetBIOS выполняет три основных функции: определение имен NetBIOS; служба дейтаграмм NetBIOS; служба сеанса NetBIOS.

Уровень транспорта

Уровень транспорта TCP/IP отвечает за установления и поддержания соединения между двумя узлами. Основные функции уровня:

Подтверждение получения информации;

Управление потоком данных;

Упорядочение и ретрансляция пакетов.

В зависимости от типа службы могут быть использованы два протокола:

TCP (Transmission Control Protocol – протокол управления передачей);

UDP (User Datagram Protocol – пользовательский протокол дейтаграмм).

TCP обычно используют в тех случаях, когда приложению требуется передать большой объем информации и убедиться, что данные своевременно получены адресатом. Приложения и службы, отправляющие небольшие объемы данных и не нуждающиеся в получении подтверждения, используют протокол UDP, который является протоколом без установления соединения.

Протокол управления передачей (TCP)

Протокол управления передачей данных – TCP (Transmission Control Protocol) – обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений . Появился в начальный период создания сетей, когда глобальные сети не отличались особой надежностью.

Надежность протокола TCP заключается в следующем:

– он диагностирует ошибки,

– при необходимости посылает данные повторно,

– если не может самостоятельно исправить ошибку, сообщает о ней на другие уровни.

Перед отправкой сегментов информации вниз по модели отправляющий протокол TCP контактирует с принимающим протоколом TCP с целью установления связи. В результате создается виртуальный канал. Такой тип коммуникации называется ориентированным на соединение.

Установление соединения происходит в три шага:

1. Клиент, запрашивающий соединение, отправляет серверу пакет, указывающий номер порта, который клиент желает использовать, а также код (определенное число) ISN (Initial Sequence number).

2. Сервер отвечает пакетом, содержащий ISN сервера, а также ISN клиента, увеличенный на 1.

3. Клиент должен подтвердить установление соединения, вернув ISN сервера, увеличенный на 1.

Принцип работы TCP:

Берет из приложения большие блоки информации, разбивает их на сегменты,

Нумерует и упорядочивает каждый сегмент так, чтобы протокол TCP на принимающей стороне мог правильно соединить все сегменты в исходный большой блок;

Согласовывает с протоколом принимающей стороны количество информации, которое должно быть отправлено до получения подтверждения от принимающего TCP;

После отправки сегментов TCP ждет подтверждения от целевого TCP о получении каждого из них;

Заново отправляет те сегменты, получение которых не было подтверждено.

Трехступенчатое открытие соединения устанавливает номер порта, а также ISN клиента и сервера. Каждый, отправляемый TCP-пакет содержит номера TCP-портов отправителя и получателя, номер фрагмента для сообщений, разбитых на меньшие части, а также контрольную сумму, позволяющую убедиться, что при передаче не произошло ошибок. Протокол TCP отвечает за надежную передачу данных от одного узла сети к другому. Он создает сеанс с установлением соединения, иначе говоря, виртуальный канал между машинами.

Пользовательский протокол дейтаграмм (UDP)

Протокол UDP предназначен для отправки небольших объемов данных (дейтаграмм) без установки соединения и используется приложениями, которые не нуждаются в подтверждении адресатом их получения . UDP считается более простым протоколом, так как не загромождает сеть служебной информацией и выполняет не все функции TCP. Однако он успешно справляется с передачей информации, не требующей гарантированной доставки, и при этом использует намного меньше сетевых ресурсов. UDP не создает виртуальных каналов и не контактирует с целевым устройством перед отправкой информации. Поэтому он считается протоколом без постоянного соединения, или не ориентированным на соединение .

Принцип работы UDP:

Получает с верхних уровней блоки информации, разбивает их на сегменты;

Нумерует каждый из сегментов, чтобы все сегменты можно было воссоединить в требуемый блок в пункте назначения, но не упорядочивает сегменты и не заботится о том, в каком порядке они поступят в место назначения,

Отправляет сегменты и «забывает» о них;

Не ждет подтверждений о получении и даже не допускает таких подтверждений и потому считается ненадежным протоколом. Но это не значит, что UDP неэффективен – просто он не относится к надежным протоколам.

UDP также использует номера портов для определения конкретного процесса по указанному IP-адресу. Однако UDP-порты отличаются от TCP-портов и, следовательно, могут использовать те же номера портов, что и TCP, без конфликта между службами.

Межсетевой уровень

Межсетевой уровень отвечает за маршрутизацию данных внутри сети и между различными сетями. На этом уровне работают маршрутизаторы, которые зависят от используемого протокола и используются для отправки пакетов из одной сети (или ее сегмента) в другую (или другой сегмент сети). В стеке TCP/IP на этом уровне используется протокол IP.

Протокол Интернета IP

Протокол IP обеспечивает обмен дейтаграммами между узлами сети и является протоколом, не устанавливающим соединения и использующим дейтаграммы для отправки данных из одной сети в другую. Данный протокол не ожидает получение подтверждения (ASK, Acknowledgment) отправленных пакетов от узла адресата. Подтверждения, а также повторные отправки пакетов осуществляется протоколами и процессами, работающими на верхних уровнях модели.

К его функциям относится фрагментация дейтаграмм и межсетевая адресация. Протокол IP предоставляет управляющую информацию для сборки фрагментированных дейтаграмм. Главной функцией протокола является межсетевая и глобальная адресация. В зависимости от размера сети, по которой будет маршрутизироваться дейтаграмма или пакет, применяется одна из трех схем адресации.

Адресация в IP-сетях

Каждый компьютер в сетях TCP/IP имеет адреса трех уровней: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя) .

Физический, или локальный адрес узла, определяемый технологией, с помощью которой построена сеть, в которую входит узел. Для узлов, входящих в локальные сети – это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем.

Сетевой, или IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла гибкое, и граница между этими полями может устанавливаться произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

При разработке протокола IP на основе размера сетей были выделены их классы (табл. 2.2):

· Класс а – немногочисленные сети с очень большим количеством узлов; номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети.

· Класс В – сети средних размеров; под адрес сети и под адрес узла отводится по 16 битов (по 2 байта).

· Класс С – сети с малым числом узлов; под адрес сети отводится 24 бита (3 байта), а под адрес узла – 8 битов (1 байт).

Таблица 2.2. Классы сетей

Диапазон адресов

Максимальное количество сетей

Максимальное количество узлов в одной сети

0Сеть.узел.узел.узел

0.0.0.0 ‑ 0.255.255.255

зарезервировано

1.0.0.0 ‑ 126.255.255.255

127.0.0.0 – 127.255.255.255

зарезервировано

10Сеть.сеть.узел.узел

128.XXX.0.0 – 191.XXX.255.255

110Сеть.сеть.сеть.узел

192.XXX.XXX.0 ‑ 223.XXX.255.255

1110Группа.группа. группа.группа

224.0.0.0 – 239.255.255.255

1111Резерв.резерв. резерв.резерв

240.0.0.0 – 255.255.255.255

зарезервировано

· Адреса класса D – особые, групповые адреса – multicast; могут использоваться для рассылки сообщений определенной группе узлов. Если в пакете указан адрес назначения, принадлежащий классу D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

· Адреса класса Е зарезервированы для будущих применений.

Помимо вышеописанных адресов существуют зарезервированные адреса, которые используются особым образом.

Если в поле номера сети стоят 0

0 0 0 0...................................0 Номер узла,

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет: если адрес компьютера 128.187.0.0, то указанный в сообщении адрес 0.0.25.31 неявно преобразуется в адрес 128.187.25.31;

Адрес 127.0.0.Х зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback или localhost. Если программа отправит пакет с таким адресом, то этот пакет, не выйдя за пределы компьютера, пройдется по всем уровням сетевой подсистемы и вернется к этой программе. Позволяет разрабатывать и тестировать сетевое программное обеспечение на локальном компьютере, в т. ч. и вообще не имеющем сетевого адаптера.

Если все двоичные разряды IP-адреса равны 1

1 1 1 1...................................1 1,

то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и отправитель. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

Если в поле адреса узла назначения стоят сплошные 1

Адрес сети 1111................11,

то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным адресом. Такая рассылка называется широковещательным сообщением (broadcast);

Адреса класса D ‑ форма группового IP-адреса – multicast. Пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения, в отличие от широковещательных, называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

Символьный адрес, или DNS-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес используется на прикладном уровне, например, в протоколах FTP или telnet.

Числовая адресация удобна для машинной обработки таблиц маршрутов. Для использования человеком она представляет определенные трудности. Для облегчения взаимодействия вначале применялись таблицы соответствия числовых адресов именам машин. Например, в ОС UNIX в каталоге /etc находится файл с именем hosts, который может иметь следующий вид:

IP-адрес Имя машины

127.0.0.1 localhost

144.206.160.32 Polyn

144.206.160.40 Apollo

По мере роста сети была разработана система доменных имен – DNS (Domain Name System), которая позволяет присваивать компьютерам легко запоминаемые имена, например yahoo.com, и отвечает за перевод этих имен обратно в IP-адреса. DNS строится по иерархическому принципу, однако эта иерархия не является строгой. Фактически нет единого корня всех доменов Internet.

Компьютерное имя имеет по меньшей мере два уровня доменов, отделяемых друг от друга точкой (.). Идущие после доменов верхнего уровня домены обычно определяют либо регионы (msk), либо организации (ulstu). Следующие уровни иерархии могут быть закреплены за небольшими организациями, либо за подразделениями больших организаций или частными лицами (например, alvinsoft.h11.ru).

Все, что находится слева, является поддоменом для общего домена. Таким образом, в имени somesite.uln.ru, somesite является поддоменом uln, который в свою очередь является поддоменом ru.

Наиболее популярной программой поддержки DNS является BIND, или Berkeley Internet Name Domain, – сервер доменных имен, который широко применяется в Internet. Он обеспечивает поиск доменных имен и IP-адресов для любого узла сети. BIND обеспечивает также рассылку сообщений электронной почты через узлы Internet.

BIND реализован по схеме «клиент-сервер». Различают четыре вида серверов:

· primary master-сервер поддерживает свою базу данных имен и обслуживает местный домен;

· secondary master-сервер обслуживает свой домен, но данные об адресах части своих машин получает по сети с другого сервера;

· caching-сервер не имеет своего домена. Он получает данные либо с одного из master-серверов, либо из буфера;

· удаленный сервер обычный master-сервер, установленный на удаленной машине, к которому обращаются программы по сети.

Primary или secondary master-серверы устанавливаются обычно на машинах, которые являются шлюзами для локальных сетей.

Шлюз (Gateway) – система, выполняющая преобразование из одного формата в другой.

Сервер имен может быть установлен на любой компьютер локальной сети. При этом необходимо учитывать его производительность, так как многие реализации серверов держат базы данных имен в оперативной памяти. При этом часто подгружается информация и с других серверов. Поэтому это может быть причиной задержек при разрешении запроса на адрес по имени машины.

Протоколы сопоставления адреса ARP и RARP

Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol (ARP) . ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети – протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило, не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу – нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP – RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

В локальных сетях ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным
IP-адресом.

Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP-запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP-запрос и сравнивают указанный там IP-адрес с собственным адресом. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета.

Протокол ICMP

Протокол управления сообщениями Интернета (ICMP – Internet Control Message Protocol) используется IP и другими протоколами высокого уровня для отправки и получения отчетов о состоянии переданной информации. Этот протокол используется для контроля скорости передачи информации между двумя системами. Если маршрутизатор, соединяющий две системы, перегружен трафиком, он может отправить специальное сообщение ICMP-ошибку для уменьшения скорости отправления сообщений. Является частью сетевого уровня набора протоколов TCP/IP.

Протокол ICMP для своих целей использует сообщения, два из которых называются эхо-запрос ICMP и эхо-ответ ICMP:

· Эхо-запрос подразумевает, что компьютер, которому он был отправлен, должен ответить на этот пакет.

· Эхо-ответ – это тип ICMP-сообщения, которое используется для ответа на такой запрос.

Эти сообщения отправляются и принимаются с помощью команды ping (Packet Internet Groper).

С помощью специальных пакетов ICMP можно получить информацию:

· о невозможности доставки пакета,

· о превышении времени жизни пакета,

· о превышении продолжительности сборки пакета из фрагментов,

· об аномальных величинах параметров,

· об изменении маршрута пересылки и типа обслуживания,

· о состоянии системы и т. п.

Протокол IGMP

Узлы локальной сети используютпротокол управления группами Интернета (IGMP – Internet Group Management Protocol), чтобы зарегистрировать себя в группе. Информация о группах содержится на маршрутизаторах локальной сети. Маршрутизаторы используют эту информацию для передачи групповых сообщений.

Групповое сообщение, как и широковещательное, используется для отправки данных сразу нескольким узлам.

Network Device Interface Specification (NDIS) – спецификация интерфейса сетевого устройства, программный интерфейс, обеспечивающий взаимодействие между драйверами транспортных протоколов, и соответствующими драйверами сетевых интерфейсов. Позволяет использовать несколько протоколов, даже если установлена только одна сетевая карта.

Уровень сетевого интерфейса

Этот уровень модели TCP/IP отвечает за распределение IP-дейтаграмм. Он работает с ARP для определения информации, которая должна быть помещена в заголовок каждого кадра. Затем на этом уровне создается кадр, подходящий для используемого типа сети, такого как Ethernet, Token Ring или ATM, затем IP-дейтаграмма помещается в область данных этого кадра, и он отправляется в сеть.